Magnetic and Structural Investigations of Nanocrystalline Cobalt-Ferrite
Authors
Abstract:
Cobalt ferrite is an important magnetic material due to their large magneto-crystalline anisotropy, high cohercivity, moderate saturation magnetization and chemical stability.In this study, cobalt ferrites Nanoparticles have been synthesized by the co-precipitation method and a new microemulsion route. We examined the cation occupancy in the spinel structure based on the “Rietveld with energies” method. The Xray measurements revealed the production of a broad single ferrite cubic phase with the average particle sizes of about 12 nm and 7nm, for co-precipitation and micro-emulsion methods, respectively. The FTIR measurements between 400 and 4000 cm-1 confirmed the intrinsic cation vibrations of the spinelstructure for the two methods. Furthermore, the Vibrating Sample Magnetometer (VSM) was carried out at room temperature to study the structural and magnetic properties. The results revealed that by changing the method from co-precipitation to the reverse micelle the material exhibits a softer magnetic behavior in such a way that both saturation magnetization and coercivity decrease from 58 to 29 emu/g and from 286 to 25 Oe, respectively.
similar resources
magnetic and structural investigations of nanocrystalline cobalt-ferrite
cobalt ferrite is an important magnetic material due to their large magneto-crystalline anisotropy, high cohercivity, moderate saturation magnetization and chemical stability.in this study, cobalt ferrites nanoparticles have been synthesized by the co-precipitation method and a new microemulsion route. we examined the cation occupancy in the spinel structure based on the “rietveld with energies...
full textStructural, magnetic, and magnetoelastic properties of magnesium substituted cobalt ferrite
full text
SYNTHESIS AND STRUCTURAL, MAGNETIC, AND ELECTROMAGNETIC CHARACTERIZATION OF COBALT FERRITE / REDUCED GRAPHENE OXIDE COMPOSITE
In this research, cobalt ferrite powders (CoFe2O4) and cobalt ferrite/reduced graphene oxide composite (CoFe2O4/RGO) were synthesized by the co-precipitation method. The phase structure, morphology, magnetic properties, and microwave absorption properties of the produced samples were investigated through various techniques. X-ray diffraction test indicated the successful formation of pure CoFe2...
full textEffect of cobalt on structural, microstructural and magnetic properties of magnesium-zinc ferrite nanoparticles
Mg0.5-xCoxZnFe2O4 ferrite nanostructures with various amounts of Co2+ substitution (x= 0, 0.05, 0.10, 0.15) were prepared using a simple and inexpensive sol-gel method sol-gel route. Structural, microstructural and magnetic properties of the prepared powders were investigated by x-ray diffraction (XRD), Fourier transform infrared (FT-IR), field emission- scanning electron microscopy (FE-SEM), X...
full textThe Effect of Zn- Cr Substitution on the Structural and Magnetic Properties of Cobalt Ferrite Nanoparticles
In this investigation, the structural and magnetic properties of Cr and Zn substituted Co ferrite with the general formula Co1-xZnxFe2-xCrxO4 (x= 0.1, 0.3, 0.5, 0.7) as prepared by sol- gel method were studied. The structural, morphological and magnetic properties of the samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Scanning electron microscopy (SEM)...
full textSpectroscopy, Structural, and Optical Investigations of NiFe2O4 Ferrite
Ni ferrite crystalline material is synthesized using a sol-gel method at two different temperatures. The vibrational and stretching modes, crystalline phase, size distribution and morphology of the products are investigated via Raman back-scattering and Fourier transform infrared (FTIR) spectroscopy, XRD and FESEM, respectively. Vibrational modes of spinel ferrite are observed at Raman and FTIR...
full textMy Resources
Journal title
volume 45 issue 1
pages 35- 40
publication date 2012-10-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023